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Abstract
We study the ‘circular net’ (discrete orthogonal net) equations for the angular
data generalized by external spectral parameters. A criterion defining physical
regimes of these Hamiltonian equations is the reality of the Lagrangian
density. There are four distinct regimes for fields and spectral parameters
classified by four types of spherical or hyperbolic triangles. Nonzero external
spectral parameters provide the existence of field-theoretical ground states and
soliton excitations. Spectral parameters of a spherical triangle correspond to
a statistical mechanics; spectral parameters of hyperbolic triangles correspond
to three different field theories with massless anisotropic dispersion relations.

PACS number: 02.30.Ik
Mathematics Subject Classification: 35Q51, 35Q58, 37K10, 37J35, 70H06,
81Txx

Introduction

The ‘circular’ or ‘conic net’ (or discrete orthogonal net) equations for angular data
[4, 5, 8] take a selected place among all the classical integrable systems [3] on the cubic lattice
with an AKP-type hierarchy. Algebraically, these equations arise as a Hamiltonian form of a
discrete three-wave system [6, 20]. The ‘conic net’ equations are the classical q → 1 limit
of the quantum ‘q-oscillator’ model [2]—the top of a pyramid of three-dimensional quantum
models—which guarantees in classics the existence of Lagrangian density, energy/action and
variational principle [1]. The existence of the quantum counterpart is an evident advantage
of discrete spacetime models with respect to their continuous spacetime predecessors [22,
23]. A straightforward geometrical condition for the conic net equations is the reality of
angular dynamical variables [1] of a circular net in the Euclidean target space or of an ortho-
chronous hyperbolic net in Minkowski one1. However, these discrete differential geometric
1 The Euclidean sphere of Miquel’s theorem corresponds to a one-sheet hyperboloid in the Minkowski metric.
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conditions can be essentially extended by a ‘physical’ condition of the reality of action near
the equilibrium point.

A general complex solution of any AKP-type system in finite volume or a solution of the
Cauchy problem with generic initial data involves algebraic geometry [15]. Such a general
solution of the discrete ‘generalized conic net’ equations in finite volume has been known for
a long time [9–14]. It involves a flat algebraic spectral curve �g of genus g � (N − 1)2 for
a size N×3 cubic lattice (three-periodic boundary conditions), �-functions on Jacobian of �q

and spectral parameters—three meromorphic functions on �g . A reduction of �g to a sphere
gives a g-soliton solution (plane wave solitons) [17, 18]. The soliton regime is the field-
theoretical one since solitons are continuous excitations over a ground state—the zero soliton
homogeneous solution of the equations of motion. Spectral parameters in the soliton regime
are a triple of complex numbers, they enter directly into the equations of motion as extra
parameters providing the existence of the homogeneous solution. The spectral parameters
break the straightforward discrete-geometric interpretation of the equations of motion.

These two principles—the reality of energy/action and the existence of a homogeneous
solution for ‘nonzero’ spectral parameters—are the starting points for the classification of
physical field theories and statistical mechanics for ‘generalized conic net’ equations. There
are four distinct regimes of spectral parameters and corresponding regimes of dynamic fields
providing the reality of action. Parameterizations of ground states have a structure of cosine
theorems for spherical or various hyperbolic triangles. In the case of a spherical triangle,
the ground state is the absolute minimum of energy functional and thus it corresponds to the
statistical mechanics. In three-field theoretical cases of hyperbolic triangles a solution of the
equations of motion provides an extremum of action; a value of whole action on the soliton
solution does not depend on amplitudes of solitons. Expressions for soliton waves involve
projective coordinates of hyperbolic triangles; a general field-theoretical solution of equations
of motion is a set of soliton–antisoliton pairs analogues to elementary stationary waves. In the
low energy–momentum limit the soliton plane waves have a cone-type (anisotropic massless)
dispersion relation.

All the regimes of spectral parameters and dynamical fields have manifested counterparts
in quantum case. Regimes of fields correspond to classical limits of different representations of
q-oscillator algebra; related regimes of spectral parameters correspond to either real or unitary
quantum R-matrices. However, relations between quantum theories and classical theories are
not straightforward.

This paper is organized as follows. In section 1, we fix notations for the ‘conic net’
equations generalized by the spectral parameters. Following [1], Lagrangian density is defined
in section 2. Next, in section 3 we classify ground states. Soliton solutions of the equations of
motion and dispersion relations are defined in section 4. In section 5, we describe the quantum
counterparts of our four regimes. Finally, in section 6, we discuss roughly a place of finite gap
solutions.

1. Generalized conic net equations

Let n be a node of a large simple cubic lattice

n = (n1, n2, n3), ni ∈ Z. (1)

Let e1,e2,e3 be the unit vectors for the lattice,

e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1), (2)
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so that n = n1e1 + n2e2 + n3e3. With each (n − ei ,n) edge of the cubic lattice we associate
a doublet of dynamical variables

Ai,n = (
ki,n, a±

i,n

)
, such that k2

i,n
def= 1 − a+

i,na−
i,n. (3)

The last relation here is in fact the ‘conic net’ condition. The local equations of motion relate
the neighbors of every node n,

Ai = Ai,n on (n − ei ,n) and A′
i = Ai,n+ei

on (n,n + ei ), (4)

as follows: (
k2a

±
1

)′ = u±1
1

(
k3a

±
1 + u∓1

2 k1a
±
2 a∓

3

)
,(

a±
2

)′ = a±
1 a±

3 − u∓1
2 k1k3a

±
2 ,(

k2a
±
3

)′ = u±1
3

(
k1a

±
3 + u∓1

2 k3a
∓
1 a±

2

)
,

(5)

and

k1k2 = k′
1k

′
2, k2k3 = k′

2k
′
3. (6)

C-valued parameters ui—exponents of spectral parameters—are the same for all nodes n.
This classical system can be viewed as an extension of the discrete three-wave equations

and conic nets since the last ones correspond to trivial spectral parameters. The circular net in
the Euclidean geometry is described by the regime k2 > 0, real a± and u1 = −u2 = u3 = 1.
The Euclidean ‘circular net’ point has a smooth continuous limit—the classical three-wave
resonant equations [23]. The hyperbolic net in the Minkowski geometry is described by the
regime k2 < 0, real a± and u1 = u2 = u3 = 1. For non-trivial spectral parameters or for
complex a±, a geometrical interpretation of equations (5) is unclear.

However, relaxing the geometric condition, equations (5) defines an evolution in (2 + 1)-
dimensional spacetime. Discrete time is t = n1 + n2 + n3, so that (5) literally gives the map
from time t to time t + 1. A straightforward way to introduce space-like coordinates is to take
n1 = x and n3 = y so that

n = n1(e1 − e2)︸ ︷︷ ︸
xex

+ n3(e3 − e2)︸ ︷︷ ︸
yey

+ (n1 + n2 + n3)e2︸ ︷︷ ︸
tet

. (7)

The Cauchy problem is well posed for a finite size space-like surface,

x, y ∈ ZN, N � 1, t ∈ Z�0. (8)

The evolution corresponds to a relativistic field theory since the locality of the evolution map
provides the relativistic casuality. Note, there is no way to introduce a usual local Hamiltonian
for classical discrete time evolution; for instance, a principal object of corresponding quantum
theories is a discrete time Heisenberg evolution operator. The framework of statistical
mechanics implies 3D Dirichlet or 3D periodical boundary conditions for system (5),

ni ∈ ZN, i = 1, 2, 3, N � 1. (9)

The principal difference between a statistical mechanics and a field theory is that for the given
reality regime and 3D periodical boundary conditions a statistical mechanics has a unique
ground-state minimizing energy, while a field theory with a saddle-type action has a rich
structure of stationary modes.

Equations (5) is a canonical transformation preserving locally the q-oscillator symplectic
form [2],

3∑
i=1

da+
i ∧ da−

i

k2
i

=
3∑

i=1

da′+
i ∧ da′−

i

k′2
i

, (10)
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and thus they have the discrete-type Hamiltonian structure [1]:

log |k′
i | = 1

2
v′

i

∂

∂v′
i

G̃(v; v′), log |ki | = −1

2
vi

∂

∂vi

G̃(v; v′), (11)

where

vi
def= a+

i

a−
i

(12)

is a useful canonical partner to ki , the variables vj , v
′
j , kj , k

′
j are related by (5) and G̃(v; v′) is

a generating function of map (5).
It is more convenient to treat k, k′ related by (6) as the independent variables and define

G(k; k′) by

dG(k; k′) = 1

2

3∑
i=1

(log[v′
i] d log k′

i − log[vi] d log ki). (13)

Here

[v] = v if v is positive or unitary and [v] = −v if v is real negative. (14)

Negative v corresponds to the regime k2 > 1. Functions G(k; k′) and G̃(v; v′) are related to
the Legendre transform,

G̃(v; v′) = 1

2

(
3∑

i=1

log[v′
i] log |k′

i | − log[vi] log |ki |
)

− G(k; k′). (15)

Function G(k; k′) is preferable since ki are the field coordinate-type variables with a fixed
reality regime k2 ∈ R.

The sum of the local generating functions over all nodes,

A ∼
∑
n∈Z3

G̃(vi,n; vi,n+ei
), (16)

gives an action/energy for the whole lattice. The equations of motion are the extremum
conditions for (16) [1].

Considering the equations of motion as the quasi-classical limit of the quantum models, we
expect two distinct regimes: k2 < 0 for modular representation of q-oscillators and k2 > 0 for
Fock space representations (regime of unitary k for cyclic representations we do not consider
here). Also, it is evident from (13) that A has two regimes of reality: either the regime of real
v when G is manifestly real or the regime of unitary v when iG is real. Thus we expect a
priori the existence of four distinct regimes:

regime 1: k2
i < 0, |vi | = 1, regime 2: k2

i < 0, vi ∈ R,

regime 3: k2
i > 0, |vi | = 1, regime 4: k2

i > 0, vi ∈ R.
(17)

The presence of the external parameters ui in the equations of motion is of great importance
for the classification scheme because the regime vi ∈ R corresponds to ui ∈ R and the regime
|vi | = 1 corresponds to |ui | = 1.

Also note a signs symmetry of equations (5): the change of the sign of any two
parameters of ui followed by a change of signs of corresponding a±

i,n on, e.g. even edges
(ni in n = (n1, n2, n3) – even) does not change the whole set of the equations of motion. This
transformation preserves the variables vi,n. In contrast to this, a change of a sign of a single
ui changes the structure of the solution of the equations of motion substantially.
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2. Generating function

The (v, k) form of the local equations of motion (5) is the following [1]. Let

τ0 = v′
2

v′
1v

′
3

u2
1u

2
3, τ1 = v2

v′
1v3

u2
1

u2
2

, τ2 = v′
2

v1v3

, τ3 = v2

v1v
′
3

u2
3

u2
2

,

τ ′
0 = v2

v1v3

1

u2
2

, τ ′
1 = v′

2

v1v
′
3

u2
3, τ ′

2 = v2

v′
1v

′
3

u2
1u

2
3

u2
2

, τ ′
3 = v′

2

v′
1v3

u2
1,

(18)

so that τ0τ
′
0 = τiτ

′
i and

τiτj = τ ′
kτ

′
l , i, j, k, l = any permutation of (0, 1, 2, 3). (19)

Equations (5) provide

k2
1 = (1 − τ2)(1 − τ3)

(1 − τ ′
0)(1 − τ ′

1)
, k′2

1 = (1 − τ ′
2)(1 − τ ′

3)

(1 − τ0)(1 − τ1)

k2
2 = (1 − τ ′

0)(1 − τ ′
2)

(1 − τ1)(1 − τ3)
, k′2

2 = (1 − τ0)(1 − τ2)

(1 − τ ′
1)(1 − τ ′

3)
,

k2
3 = (1 − τ1)(1 − τ2)

(1 − τ ′
0)(1 − τ ′

3)
, k′2

3 = (1 − τ ′
1)(1 − τ ′

2)

(1 − τ0)(1 − τ3)
.

(20)

Note that the expressions for k2
i , k

′2
i are invariant with respect to inversion τj → τ−1

j , τ ′
j →

τ ′−1
j . Thus, differential (13) has the form

dG(k; k′) = 1

4

3∑
j=0

(log[τj ] d log(1 − τj ) − log[τ ′
j ] d log(1 − τ ′

j ))

+
1

2

(
log u2

1 d log k′
1 − log u2

2 d log k2 + log u2
3 d log k′

3

)
. (21)

Integrating this, one gets

G(k; k′) = G0(k; k′) +
1

2

(
log u2

1 log |k′
1| − log u2

2 log |k2| + log u2
3 log |k′

3|
)
, (22)

where

G0(k; k′) = 1

4

3∑
j=0

(J (τj ) − J (τ ′
j )) (23)

and

J (τ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫ τ

z0

log z d log(1 − z) in regimes 1, 2∫ −τ

z0

log z d log(1 + z) in regimes 3, 4.

(24)

The choice of z0 common for all integrals is irrelevant. We choose zero value for a constant
of integration in (22). The G0(k; k′) term in (22) corresponds to Lagrangian density without
fields [1] but it must be treated carefully due to the inversion symmetry of τj .

The generation function (22) becomes symmetric after an elementary gauge
transformation,

Gsym(k; k′) = G0(k; k′) + 1
4

(
log u2

1 log |k1k
′
1| − log u2

2 log |k2k
′
2| + log u2

3 log |k3k
′
3|

)
. (25)

5
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3. Ground states

By ‘ground state’ we understand the homogeneous solutions of equations (5):

vj = v′
j , kj = k′

j , (26)

which correspond to
v2

v1v3
= u2

u1u3
⇔ τ ′

j = τ−1
j . (27)

In the vicinity of this point the fields are parameterized by

k2
1 = (u1u3 − u2)(u1u2 − u3)

(1 − u1u2u3)(u2u3 − u1)
e2ρ1 , k′2

1 = (u1u3 − u2)(u1u2 − u3)

(1 − u1u2u3)(u2u3 − u1)
e2ρ ′

1 ,

k2
2 = (1 − u1u2u3)(u1u3 − u2)

(u2u3 − u1)(u1u2 − u3)
e2ρ2 , k′2

2 = (1 − u1u2u3)(u1u3 − u2)

(u2u3 − u1)(u1u2 − u3)
e2ρ ′

2 ,

k2
3 = (u2u3 − u1)(u1u3 − u2)

(1 − u1u2u3)(u1u2 − u3)
e2ρ3 , k′2

3 = (u2u3 − u1)(u1u3 − u2)

(1 − u1u2u3)(u1u2 − u3)
e2ρ ′

3 ,

(28)

where

ρ1 − ρ ′
1 = ρ ′

2 − ρ2 = ρ3 − ρ ′
3. (29)

The generating function (25) near the ground state ρ = 0 is

Gsym = Gsym|ρ=ρ ′=0 +
∑

i

(
ui − u−1

i

)(
uj − u−1

j

)(
uk − u−1

k

)x2
i

− u1 + u−1
1

u1 − u−1
1

x2x3 +
u2 + u−1

2

u2 − u−1
2

x1x3 − u3 + u−1
3

u3 − u−1
3

x1x2

− (u1u2u3 − 1)(u1u2 − u3)(u1u3 − u2)(u2u3 − u1)

u2
1u

2
2u

2
3

(
u1 − u−1

1

)(
u2 − u−1

2

)(
u3 − u−1

3

) δ2 + O(ρ3), (30)

where

xi = ρi + ρ ′
i

2
, δ2 =

(
ρi − ρ ′

i

2

)2

, (31)

and Gsym|ρ=ρ ′=0 = G(k; k) is calculated at the point ρi = ρ ′
i = 0 (ki = k′

i ).
Now we are ready to classify the generating functions for all the four regimes. Depending

on the regime, expressions (28) are equivalent to cosine theorems for spherical or hyperbolic
triangles; thus the classification scheme is based on the spherical and hyperbolic geometry.

3.1. Regime 1

Unitary spectral parameters are given by

u1 = eiε1φ1 , u2 = eiε2φ2 , u3 = eiε3φ3 , (32)

where φi > 0 and εi are signs. In what follows we use short notations

β4 = φ1 + φ2 + φ3

2
, βi = β4 − φi. (33)

In spherical geometry the angles φi are the sides of a spherical triangle. It is convenient to
define excess β0 instead of half-perimeter β4 by

β0 = π − β4. (34)

6
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Then for ε1 = ε2 = ε3 = 1 one has

k2
1 = −tan2 θ1

2
, k2

2 = −cot2
θ2

2
, k2

3 = −tan2 θ3

2
, (35)

where θi are the dihedral angles of the spherical triangle with sides φi :

cos θi = cos φi − cos φj cos φk

sin φj sin φk

, cos φi = cos θi + cos θj cos θk

sin θj sin θk

,

tan2 θi

2
= sin βj sin βk

sin β0 sin βi

.

(36)

Spherical geometry implies positive θ excess

θ1 + θ2 + θ3 > π ⇒ 0 < βj < π, j = 0, 1, 2, 3. (37)

Other choices of signs εi such that ε1ε2ε3 = 1 are equivalent to crossing transformations of the
spherical triangle (in fact, crossing transformations involve φ → π − φ, the sign symmetry
of ui we discussed above).

For the arbitrary signs εi let

F(k; k′) = iε1ε2ε3G(k; k′), H =
∑
n∈Z3

F(ki,n; ki,n+ei
). (38)

The homogeneous solution provides the absolute minimum of functional H; on this ground
state the free-energy density F(k; k) = F0 is given by

F0 =
3∑

j=0

L(βj ) =
3∑

i=1

L(βi) − L(β4) > 0, (39)

where Milnor’s Lobachevski function is

L(β) = −
∫ β

0
log(2 sin x) dx. (40)

The statement about the absolute minimum can be verified instantly in the free-field
approximation (30) where

H = N3F0 + positively defined quadratic form of ρi,n. (41)

Here N3 is a volume of the lattice. We will discuss this statement beyond the free-field
approximation in the following section.

3.2. Regime 2

This is the case of spectral parameters

u1 = eε1φ1 , u2 = eε2φ2 , u3 = eε3φ3 , (42)

where φi > 0 and εi are signs. Values of ki of the homogeneous solution for ε1 = ε2 = ε3 = 1
are given by (35) where θi are the dihedral angles of a triangle on the upper sheet of a two-sheets
hyperboloid. Parameters φi are the hyperbolic sides of this triangle. The cosine theorems read

cos θi = cosh φj cosh φk − cosh φi

sinh φj sinh φk

, cosh φi = cos θi + cos θj cos θk

sin θj sin θk

,

tan2 θi

2
= sinh βj sinh βk

sinh β4 sinh βi

,

(43)

where excesses are given by (33). Hyperbolic geometry implies negative θ excess

θ1 + θ2 + θ3 < π ⇒ 0 < βi, i = 1, 2, 3. (44)

7
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Other choices of signs εi are analogues of crossing transformation of the hyperbolic
triangle.

For arbitrary signs εi define the Lagrangian density and the action by

L(k; k′) = −ε1ε2ε3G(k; k′), A =
∑
n∈Z3

L(ki,n; ki,n+ei
). (45)

The criterion for a correct sign of Lagrangian density is the positive sign near δ2 in the free-field
approximation (30),

L(k; k′) = (positive coeff.) × δ2 − V (x) − V0, (46)

so that δ2 stands for a square of velocity and V (x) + V0 stands for a potential. In this regime,
the quadratic form V (x) is positively defined. On the homogeneous solution (ground state)

L(k; k) = −V0 =
∫ β4

0
log(2 sinh x) dx −

3∑
i=1

∫ βi

0
log(2 sinh x) dx > 0. (47)

The global quadratic form has the saddle structure; a general solution of the linearized equations
of motion is plane waves with a certain dispersion relation. As is clear for free theory, the
value of the whole action on any plane wave solution of the equations of motion in finite
volume coincides with its value on the vacuum solution,

A = −N3V0. (48)

In the following sections, we give a general solitonic solution of the field-theoretical
equations of motion which can be regarded as excitations over the ground state. Dispersion
relation for solitons is the same as the dispersion relation for linearized theory. Since for
3D periodical boundary conditions the value of whole action at the equilibrium point is an
universal invariant, it does not depend on amplitudes of solitons and therefore it equals the
value of the whole action for ground state.

3.3. Regime 3

The unitary parameters ui are given by

u1 = eiε1φ1 , u2 = −eiε2φ2 , u3 = eiε3φ3 (49)

where as usual φi > 0, εi are the signs and the excesses are defined by (33). This gives for
ε1 = ε2 = ε3 = 1,

k2
1 = coth2 θ1

2
, k2

2 = tanh2 θ2

2
, k2

3 = coth2 θ3

2
, (50)

with cosine theorems

cosh θi = cos φi + cos φj cos φk

sin φj sin φk

, cos φi = cosh θj cosh θk − cosh θi

sinh θj sinh θk

,

coth2 θi

2
= cos βj cos βk

cos β4 cos βi

.

(51)

This is a hyperbolic triangle formed by an intersection of three planes with time-like normals
(and hyperbolic angles θi between them) and a one-sheet hyperboloid. Trigonometric sides φi

are defined in the motionless frame of reference for each plane. The time-like normals form a
dual triangle on the two-sheets hyperboloid of regime 2. The geometry provides the constraint
for βi :

0 < βi < π/2, i = 1, 2, 3, 4, (52)

8
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otherwise it would be regime 1. Other choices of signs εi are analogues of crossing
transformation of the hyperbolic triangle.

We define the Lagrangian density for the arbitrary signs εi by

L(k; k′) = iε1ε2ε3G(k; k′), (53)

where the sign criterion is the same as for regime 2. However, the quadratic potential here is
not sign defined. On the homogeneous solution (ground state)

L(k; k) = −V0 =
∫ β4

0
log(2 cos x) dx −

3∑
i=1

∫ βi

0
log(2 cos x) dx < 0. (54)

3.4. Regime 4

Real spectral parameters are defined by

u1 = e−ε1φ1 , u2 = −e−ε2φ2 , u3 = e−ε3φ3 , (55)

where φi are positive, εi are again signs. The negative sign of one of the ui makes the difference
with regime 2. This parameterization gives for ε1 = ε2 = ε3 = 1,

k2
1 = tanh2 θ1

2
, k2

2 = coth2 θ2

2
, k2

3 = tanh2 θ3

2
(56)

where the cosine theorems are

cosh θi = cosh φi + cosh φj cosh φk

sinh φj sinh φk

, cosh φi = cosh θi + cosh θj cosh θk

sinh θj sinh θk

,

tanh2 θi

2
= cosh βj cosh βk

cosh β4 cosh βi

.

(57)

The hyperbolic excesses are defined by (33). This corresponds to a triangle on the one-sheet
hyperboloid with the hyperbolic sides φi and the hyperbolic dihedral angles θi . Such triangle
is the section of the one-sheet hyperboloid by planes with space-like normals. Note, two
planes with space-like normals and hyperbolic angles between them do not intersect on the
two-sheet hyperboloid. In contrast, two planes with the space-like normals and trigonometric
angle between them intersect on the two-sheet hyperboloid, this corresponds to regime 2.

Other choices of signs εi are analogues of crossing transformation of the hyperbolic
triangle.

The Lagrangian density and the action are then

L(k; k′) = ε1ε2ε3G(k; k′), A =
∑
n∈Z3

L(ki,n; ki,n+ei
). (58)

In this regime, the quadratic potential is not sign defined either. The ground state gives

L(k; k) = −V0 =
∫ β4

0
log(2 cosh x) dx −

3∑
j=1

∫ βj

0
log(2 cosh x) dx > 0. (59)

4. Solitons

4.1. General soliton solution of (5)

A general (complex) soliton solution of equations (5) is given by the reduction of a general
algebraic geometry solution corresponding to the reduction of the genus g curve to a sphere

9
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with punches. The resulting expressions are the following [17]. For the number of solitons
g � 0 let

{Xj, Yj }j=1,...,g, f = {fj }j=1,...,g (60)

be a set of 3g complex values. For the given f and {Xj, Yj } let

Fj = fj

∏
k �=j

Xj − Xk

Yj − Xk

. (61)

Next we define

�(f) =
det

∣∣Xk−1
j + FjY

k−1
j

∣∣
j,k=1,...,g∏

i>j (Xi − Xj)
, (62)

where in the numerator there is the determinant of the g × g matrix with matrix indices j, k.
In this expression, fj is the amplitude of the j th soliton, if one of fj = 0 then (62) simply
gives the g − 1 soliton expression. For instance,

g = 0 ⇒ � = 1,

g = 1 ⇒ �(f1) = 1 + f1,

g = 2 ⇒ �(f1, f2) = 1 + f1 + f2 + f1f2
(X1 − X2)(Y1 − Y2)

(X1 − Y2)(Y1 − X2)
,

(63)

etc. In general, at the first order of f

�(f) = 1 +
g∑

j=1

fj + higher terms, (64)

which corresponds to the free-field (linear) approximation. Further, let

ωk,j = ωk(Xj , Yj ) = (Yj − Pk)(Xj − Qk)

(Xj − Pk)(Yj − Qk)
, j = 1, . . . , g, k = 1, 2, 3 (65)

and

f(n) = {fj (n)}j=1,...,g, fj (n) = fjω
n1
1,jω

−n2
2,j ω

n3
3,j . (66)

Also, for brevity, let

�n = �(f(n)). (67)

The general soliton solution of (5) is then given by [13]

k2
1,n = E(Q2,Q3)E(P2, P3)

E(Q2, P3)E(P2,Q3)

�n�n−e2+e3

�n−e2�n+e3

,

k2
2,n = E(Q1,Q3)E(P1, P3)

E(Q1, P3)E(P1,Q3)

�n−e2�n+e1−e2+e3

�n+e1−e2�n−e2+e3

,

k2
3,n = E(Q1,Q2)E(P1, P2)

E(Q1, P2)E(P1,Q2)

�n�n+e1−e2

�n+e1�n−e2

,

(68)

where

E(Q,P ) = Q − P√
dQdP

(69)

10
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is the prime form on a compact complex plane. Spectral parameters in this parameterization
are given by

u1u2u3 = −E(Q1,Q2)E(P1,Q3)E(P2, P3)

E(P1, P2)E(Q1, P3)E(Q2,Q3)
,

u1

u2u3
= −E(Q1, P2)E(P1, P3)E(Q2,Q3)

E(P1,Q2)E(Q1,Q3)E(P2, P3)
,

u2

u1u2
= −E(P1,Q2)E(Q1, P3)E(P2,Q3)

E(Q1, P2)E(P1,Q3)E(Q2, P3)
,

u3

u1u2
= −E(P1, P2)E(Q1,Q3)E(Q2, P3)

E(Q1,Q2)E(P1, P3)E(P2,Q3)
.

(70)

4.2. Identification of parameterizations

The homogeneous solution of (5) corresponds to g = 0 when all �n = 1. Expressions (68)
are equivalent to parameterizations of homogeneous k2

j in terms of spherical and hyperbolic
triangles. Let us demonstrate this statement in more detail.

In regime 1 of the Euclidean spherical trigonometry, consider the planes defined by their
unit normal vectors ni in some auxiliary frame of reference,

ni = (sin ϑi cos ϕi, sin ϑi sin ϕi, cos ϑi). (71)

The dihedral angle between two planes equals the angle between normals,

θ3 = ̂n1 n2, θ2 = π − ̂n1n3, θ1 = ̂n2n3, (72)

where θi are the inner dihedral angles of the spherical triangle. Cosine theorems give

cos θ1 = (n2, n3) = cos ϑ2 cos ϑ3 + sin ϑ2 sin ϑ3 cos(ϕ2 − ϕ3) etc. (73)

For all points, ni on the sphere define their stereographic projections to a complex plane:

Qi = tan
ϑi

2
eiϕi , Pi = −cot

ϑi

2
eiϕi . (74)

The cosine theorem can then be rewritten as

−tan2 θ1

2
= cos θ1 − 1

cos θ1 + 1
= (Q2 − Q3)(P2 − P3)

(Q2 − P3)(P2 − Q3)
, (75)

which makes exact correspondence between (35) and (68) for �n = 1.
This can be done similarly for all other regimes. In the Minkowski metric g =

diag(1,−1,−1), a time-like unit vector is parameterized by

ni = (cosh ϑi, sinh ϑi cos ϕi, sinh ϑi sin ϕi) so that

cosh θ1 = (n2, n3) = cosh ϑ1 cosh ϑ2 − sinh ϑ1 sinh ϑ2 cos(ϕ1 − ϕ2),
(76)

which gives for regime 3

Qi = tanh
ϑi

2
eiϕi , Pi = coth

ϑi

2
eiϕi . (77)

The proper parameterization of space-like unit vectors is the following:

ni = (tan ϑi, sec ϑi cos ϕi, sec ϑi sin ϕi), so that

cos θ1or cosh θ1 = −(n2, n3) = cos(ϕ2 − ϕ3) − sin ϑ1 sin ϑ2

cos ϑ2 cos ϑ3
,

(78)

which gives for regimes 2,4

Qi = ei(ϕi+ϑi), Pi = −ei(ϕi−ϑi). (79)

11
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Thus, in terms of complex parameters Pi,Qi , regimes are classified as follows:

regime 1: PiQ
∗
i = −1,

regime 3: PiQ
∗
i = 1,

regimes 2,4: |Pi | = |Qi | = 1,

(80)

where ∗ stands for complex conjugation.

4.3. Plane waves and dispersion relation

Relation (66) stands for a plane wave with exponential frequencies ωk(X, Y ), k = 1, 2, 3.
Parameterization (65) can be viewed as a general solution of an algebraic equation relating
three ωk, k = 1, 2, 3. This dispersion relation can be obtained by elimination of X, Y from
(65); it has the form

2∑
i,j,k=0

cijk(u1, u2, u3)ω
i
1ω

j

2ω
k
3 = 0, (81)

where ci,j,k(u1, u2, u3) are simple but lengthy rational coefficients. Note that the free-field
approximation provides the same dispersion relation.

3D periodical boundary conditions in a rather big volume require unitary ωk .
Parameterization (65) and definition of regimes (80) provide immediately the following:

• In regime 1 it is impossible2 to make all three ωk(X, Y ) unitary. Thus, the homogeneous
solution is indeed the absolute minimum of the energy functional (38). For the open
boundary conditions, the solitons of regime 1 break the signature condition k2

i,n < 0.
• In regimes 2,4, when Pk,Qk are unitary, all ωk(X, Y ) are unitary if X∗Y = 1.
• In regime 3, when PkQ

∗
k = 1, all ωk(X, Y ) are unitary if |X| = |Y | = 1.

In all field-theoretical regimes the reality condition �∗
n = �n is satisfied for soliton–

antisoliton pairs with conjugated amplitudes.
The dispersion relation for ωk near unity,

ω1 = eip1 , ω2 = e−ip2 , ω3 = eip3 , (82)

where momenta pi are small, reads

p2
1p

2
2

(
u3 − u−1

3

)2
+ p1p2p

2
3

(
u1 − u−1

1

)(
u2 − u−1

2

)(
u3 + u−1

3

)
+ cyclic permutations = 0.

(83)

Due to the homogeneouty, this relation describes a cone-type surface in momentum space.
In the symmetric cases u1 = u2 = u3 or u1 = −u2 = u3, which corresponds to
φ1 = φ2 = φ3 = φ > 0, relation (83) becomes

p2
1p

2
2 + p2

1p
2
3 + p2

2p
2
3 + 2Cp1p2p3(p1 + p2 + p3) = 0, (84)

where

regime 1: C = cos φ, − 1/2 < C < 1;
regime 2: C = cosh φ, 1 < C;
regime 3: C = −cos φ, − 1 < C < −1/2;
regime 4: C = −cosh φ, C < −1.

(85)

2 The unitarity condition in regime 1 demands X∗X = Y ∗Y = −1.
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Our four regimes cover the real axis, C ∈ R\{1,−1,−1/2}. We then define an energy E and
space-like momenta πi (we do not care about scales of energy and momenta) by

pi = E + πi, π1 + π2 + π3 = 0. (86)

Let

π2 = 1

2

(
π2

1 + π2
2 + π2

3

)
, γ = π1π2π3

π3
. (87)

If C < −1/2 or 1 < C, equation (84) defines an anisotropic cone-type surface

E = α(γ )π (88)

where α(γ ) is a real solution of(
C + 1

2

)
α4 − Cα2 + (C − 1)γ α + 1

6 = 0. (89)

Anisotropy parameter γ is bounded,

−γ0 � γ � γ0, γ0 =
√

4

27
. (90)

Critical values γ = ±γ0 correspond to three selected directions in the momentum space when

p1 = p2 = 0 or p1 = p3 = 0 or p2 = p3 = 0. (91)

When C < −1/2 (regimes 3,4), equation (89) has one positive and one negative solution
which gives a rather anisotropic ‘cone’ with

1√
3

(√
2C − 2

2C + 1
− 1

)
� α+(γ ) � 1√

3

(√
2C − 2

2C + 1
+ 1

)
, (92)

where α+(γ ) are taken as positive (negative solutions for given γ are α−(γ ) = −α+(−γ )).
When γ = ±γ0, equation (89) has extra solutions α = ± 1√

3
; these solutions are isolated and

therefore do not belong to a one-parameter family, and they have no relation to ωi and should
be ignored.

When 1 < C (regime 2), equation (89) has two positive and two negative solutions
which give two imbedded tangent anisotropic ‘cones’. The ‘cones’ are tangent along
γ = ±γ0, α(±γ0) = ± 1√

3
; these points are not isolated. The existence of two ‘speeds

of light’ is a surprise.
Regime 2 involves the Lorentz group limit. If all φi in this regime are small, cos φ1 � 1,

then the dispersion relation (83) becomes(
p1

φ1

p2

φ2
+

p1

φ1

p3

φ3
+

p2

φ2

p3

φ3

)2

= 0, (93)

which is equivalent to an isotropic light cone and gives the pure Minkowski metric in the
momentum space.

When −1/2 < C < 1 (regime 1), equation (89) has no real solutions as expected.

5. Quantum theories

In this section we discuss the relation of classical regimes with quantum models.
We commence with a short reminder of quantum R-matrices. Let A be the enveloping of

the q-oscillator algebra

ka± = q±1a±k, a+a− = 1 − q−1k2, a−a+ = 1 − qk2. (94)

13
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equipped by a pair of C-valued parameters λ,μ,

A = (1,k,a±, λ, μ). (95)

The map R123 [1, 2] of tensor cube A1 ⊗ A2 ⊗ A3 is defined by (confer with (5))

R123k2a
±
1 R−1

123 = u±1
1

(
k3a

±
1 + u∓1

2 k1a
±
2 a∓

3

)
,

R123a
±
2 R−1

123 = a±
1 a±

3 − u∓1
2 k1k3a

±
2 ,

R123k2a
±
3 R−1

123 = u±1
3

(
k1a

±
3 + u∓1

2 k3a
∓
1 a±

2

)
,

(96)

where

u1 = λ3

λ2
, u2 = − 1

λ1μ3
, u3 = μ1

μ2
, (97)

satisfies the adjoint tetrahedron equation in A⊗6 and the quantum tetrahedron equation in
proper Rep(A)⊗6 (spectral parameters λ1, μ1, . . . λ6, μ6 for the tetrahedron equation are free).
Equations (96) provide in addition

R123k1k2R
−1
123 = k1k2, R123k2k3R

−1
123 = k2k3. (98)

‘Constant’ matrix r123 corresponds to u1 = u2 = u3 = 1. In modular representation

q = eiπb2
, k = −ieπσb, b > 0 and σ ∈ R, (99)

the kernel of the constant r-matrix is given by [1]

〈σ1σ2σ3|r|σ ′
1σ

′
2σ

′
3〉 = δσ1+σ2,σ

′
1+σ ′

2
δσ2+σ3,σ

′
2+σ ′

3

√
ϕ(σ1)ϕ(σ2)ϕ(σ3)

ϕ(σ ′
1)ϕ(σ ′

2)ϕ(σ ′
3)

e−iπ(σ1σ3−iη(σ1+σ3−σ ′
2))

∫
R

du e2π iu(σ ′
2−iη)

ϕ
(
u + σ ′

1+σ ′
3+iη

2

)
ϕ
(
u + −σ1−σ3+iη

2

)
ϕ
(
u + σ1−σ3−iη

2

)
ϕ
(
u + σ3−σ1−iη

2

) (100)

where ϕ(z) is the ‘non-compact quantum dilogarithm’ [7] defined by

ϕ(z) = exp

(
1

4

∫
R+i0

e−2izw

sinh(wb)sinh(w/b)

dw

w

)
,

ϕ(z − ib±1/2)

ϕ(z + ib±1/2)
= 1 + e2πzb±1

. (101)

Crossing parameter η in (100) is given by

η = b + b−1

2
. (102)

In Fock space (F +) and anti-Fock space (F−) representations

q = e−ε, k = qn+1/2, n = 0, 1, 2, 3 . . . (F +) or n = −1,−2,−3, . . . (F−),

(103)

the matrix elements of the constant r-matrix are given by a similar formula [1, 2, 21],

〈n1n2n3|r|n′
1n

′
2n

′
3〉 = δn1+n2,n

′
1+n′

2
δn2+n3,n

′
2+n′

3

3∏
i=1

cni ,n
′
i

qn1n3+n′
2

1

2π i

∮
dz

zn′
2+1

(−q2+n′
1+n′

3z; q2)∞(−q−n1−n3z; q2)∞
(−q+n1−n3z; q2)∞(−q−n1+n3z; q2)∞

(104)

where

cn,n′ =
√

(q2; q2)n′

(q2; q2)n
if n = 0, 1, 2, 3 . . . (F +) (105)
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or

cn,n′ =
√

qn′(n′+1)(q2; q2)−n−1

qn(n+1)(q2; q2)−n′−1
if n = −1,−2,−3,−4 . . . (F−) (106)

The clockwise integration loop in (104) circles all poles of the integrand but does not include
z = 0. Pochhammer’s symbols and Euler’s quantum dilogarithm are defined by

(z; q2)n = (1 − z)(1 − q2z) · · · (1 − q2(n−1)z),
(−z/q; q2)∞
(−qz; q2)∞

= 1 + z/q. (107)

Matrix (104) has the block-diagonal structure in

F
ε1
1 ⊗ F

ε2
2 ⊗ F

ε3
3 , εi = ±, (108)

and thus it defines eight different R-matrices. Classical limits of Fock and anti-Fock space
representations (103) provide

0 < k < 1 for F + and 1 < k for F−. (109)

Pre-factors and integrands in both (100) and (104) have identical difference properties
(leftmost relations in (101) and (107)); the main difference is that there is a non-compact set of
poles in the modular integrand and there is a compact set of poles in the Fock space integrand.

The advantage of the special case u1 = u2 = u3 = 1 is that the constant r is the symmetric
root of unity,

r2
123 = 1, r†

123 = s1s2s3 r123(s1s2s3)
−1, (110)

where s = 1 for modular representation and Fock representation F + and

s = (−)n for F−. (111)

Factor s takes into account the anti-unitarity (a±)† = −a∓ of anti-Fock representations. For
instance, the matrix

r′
123 = (−)n2r123 in F +

1 ⊗ F−
2 ⊗ F +

3 (112)

is Hermitian.
Spectral parameters in (96) are given by ‘external field’ factors. All cases below

correspond to spectral parameters (32, 42, 49, 55) with positive signs ε1 = ε2 = ε3 = 1.

5.1. Regime 1

The R-matrix of (96) in modular representation k2 < 0 (99) and spectral parameters of
regime 1 are given by

R123 = e−2ηφ2σ2r123 e2ηφ1σ1+2ηφ3σ3 . (113)

The kernel of (113) is real and in the vicinity of the equilibrium point (35) it is positive with
the asymptotic

〈σ1σ2σ3|R123|σ1σ2σ3〉 ∼ exp

(
− F0

πb2

)
as b → 0 and − i eπbσi → ki, (114)

where free energy F0 as a function of φ1..3 is given by (39). Presumably, partition function per
site for cubic lattice and the R-matrix (113) in physical regime 0 < βj < π is

z = exp

(
−4η2

π
F0

)
(115)

for arbitrary η > 0 (102).
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5.2. Regime 2

The R-matrix of (96) in modular representation k2 < 0 (99) and spectral parameters of
regime 2 are given by

R123 = �−1 e2iηφ2σ2r123 e−2iηφ1σ1−2iηφ3σ3 , (116)

where � is a unitary constant multiplier. In the vicinity −ieπbσi → ki of ground state (35) for
regime 2 the kernel of the constant r-matrix oscillates. R-matrix (116) is unitary and therefore
it is the building block for a Heisenberg evolution operator. However, a spectral equation for
the evolution operator is not yet known and we cannot rigorously deduce a relation between
spectra of quantum field theory and solitons and dispersion relation (83) of classical field
theory.

5.3. Regime 3

A self-consistent quantum field theory for Fock space representations corresponding to spectral
parameters (49) and (50) is defined by

R123 = �−1 ei(π−φ2)n2r123 eiφ1n1+iφ3n3 in F−
1 ⊗ F +

2 ⊗ F−
3 . (117)

The constant r-matrix in F−
1 ⊗ F +

2 ⊗ F−
3 oscillates, operator (117) is the unitary one for

unitary constant multiplier �. A spectral equation for the Heisenberg evolution operator is
not known either except for a special 1 + 1 dimensional case and small occupation numbers
[19]. In the same way as for regime 2 we cannot deduce rigorously relations between quantum
spectra and classical dispersion relation. Note however an interesting feature of regime 3:
a self-consistency prescribes a correspondence between signatures εi of spectral parameters
and a choice of representation F + with 0 < k < 1 or F− with k > 1. Presumably, this
correspondence provides a proper physical interpretation of spectra of evolution operators
(see [19] for 1 + 1 dimensional case). A choice of constant � in both regimes 2 and 3 is also a
subject of proper physical interpretation.

5.4. Regime 4

Curiously, the field-theoretical regime 4 has no quantum field-theoretical counterpart; it
corresponds to divergent statistical mechanics.

The R-matrix for regime 4 (55) is given by

R123 = eφ2n2 r′
123 e−φ1n1−φ2n2 in F +

1 ⊗ F−
2 ⊗ F +

3 (118)

where r′ is defined by (112) and representation F +
1 ⊗ F−

2 ⊗ F +
3 is chosen in accordance with

(56). Matrix elements of (118) are strictly positive and diverge as

〈n|R|n〉 ∼ qn1n2−n1n3+n2n3+lower terms as n1, n3 → ∞, n2 → −∞. (119)

A well-defined statistical mechanical lattice theory should involve a compensation of quadratic
exponential asymptotic. It is possible via certain non-linear boundary conditions preserving
the integrability and involving extra three temperature-like parameters.

In the quasi-classical limit q = e−ε → 1, the diagonal matrix element of r′ is given by

〈n|r′|n〉 ∼ eφ1n1−φ2n2+φ3n3 exp

(
V0

ε

)
as ε → 0, (120)

where finite ki = qni define by (56) and (57) the hyperbolic triangle with dihedral angles θi

and positive sides φi, V0 is then given by (59). For so defined φi the field factor in (118)
compensates the pre-exponent in (120). However, this ‘classical equilibrium point’ has no
relation with a self-consistent quantum model.
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5.5. Regimes 2 and 3 as gauge field theories

Well-defined quantum field theories in regimes 2 and 3 involve Bose q-oscillators. However,
the algebraic approach to the quantum tetrahedron equations allows one to introduce Fermi
oscillators in addition to Bose ones [21]. All fermionic R-matrices are even, and they involve
two fermions and one boson. Both fermionic and bosonic R-matrices are building blocks of the
Heisenberg evolution operator. One can straightforwardly consider an evolution of simple test
states with small total occupation numbers (in the Fock space representation for bosons). The
evolution produces a set of Feynmann diagrams on a constant time discrete surface (kagome
lattice). In addition to simple propagation, fermionic R-matrices are responsible for emissions
of bosons, the decay of a boson into a fermion pair and the annihilation of a fermion pair into
a boson. Thus, the interpretation of quantum field theories as gauge field theories, where the
bosons are gauge fields and fermions are matter field, is quite natural. Presumably, a proper
choice of spectral parameters provides also a gap between bosonic ground state and fermionic
ground state; thus the spectral parameters are also responsible for fermionic mass.

6. Discussion: algebraic curves of higher genera

Formulas (68) for the soliton solution from the previous sections formally coincide with those
for a general complex algebraic geometry (finite gap) solution: Pi,Qi are divisors on a genus
g algebraic curve �g,E is a prime form on it, f is related to a point on Jac(�g) and �n is a
theta-function:

�n = �(I (n)), I (n) = z + n1

∫ P1

Q1

ω − n2

∫ P2

Q2

ω + n3

∫ P3

Q3

ω ∈ Jac(�g), (121)

where ω is a vector of Abel’s holomorphic differentials and z is an arbitrary point on the
Jacobian. Any three-terms relation (5) is just the Fay identity [16]. The expression for I (n)

in (121) corresponds to a special case of homogeneous divisors. Divisors Pi,Qi are not free,
they are divisors of three meromorphic functions,

N

∫ Pi

Qi

ω = 0 mod(π, π�), i = 1, 2, 3, (122)

where N is a size of cubic lattice, and � is a period matrix; equations (122) provide the
periodical boundary conditions.

The soliton solution is not just a straightforward trigonometric limit of algebraic geometry
one since conditions (122) are relaxed, Pi and Qi in a general complex soliton solution are
free.

For the discrete time evolution system, the initial data of the Cauchy problem define
uniquely the algebraic curve [13] and thus selects the cases of soliton or finite gap dynamics.

For general finite gap dynamics the spectral parameters ui in (5) are not uniquely defined.
The reason is that equations of motion (5) have gauge invariance. The gauge transformation

a±
j,n → ξ±1

j,na±
j,n (123)

such that

ξ2,n+e2 = ξ1,nξ3,n (124)

is equivalent to the transformation of spectral parameters
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u1 → u1
ξ1,n

ξ1,n+e1

, u2 → u2
ξ2,n+e2

ξ2,n
, u3 → u3

ξ3,n

ξ3,n+e3

. (125)

The existence of a homogeneous solution of equations of motion (5) fixes the gauge
group element and thus provides the definition of uj . Otherwise, parameters uj are
irrelevant.

Based on the principles of quantum-classical correspondence, one can conclude that the
canonical quantization of q-oscillators (94) and the choice of the Hilbert space as the product
of local irreducible representations of q-oscillators corresponds to the choice of soliton sector
on classical equations of motion. In particular, the condition of polynomial structure of
Q-operators for a nested Bethe ansatz for Fock space representations literally corresponds
to factorization of a spectral curve. The finite gap sector must thus correspond to another
quantization scheme—a finite-gap quantization.
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